

Zhixiang HOU 3° Année Stage Adjoint Ingénieur, été 2022

École des Mines d'Alès

Économie circulaire ACV d'une filière de construction d'ouvrages en pierres sèches

IMT Mines Alès CREER

Adresse: 7 Rue Jules Renard 30100 ALÈS

Tuteur: M. Guillaume JUNQUA

Fonction: Enseignant-chercheur

Sommaire

Remerciements	4
Résumé	5
Abstract	6
1 Introduction	7
1.1 Problématique	7
1.2 Projet Laubapro	7
1.3 Notre équipe	8
1.4 Description de la mission	8
1.5 Planning de mission	8
2 Description de la méthode analytique	9
2.1 La méthode d'ACV	9
2.2 Le logiciel openLCA	10
2.3 La base de données	11
3 Description du modèle	11
3.1 Objectifs et champ d'étude	11
3.1.1 Objectifs	11
3.1.2 Frontières du système	12
3.2 Analyse de l'inventaire	12
3.3 Évaluation des impacts	13
3.4 Interprétation de l'analyse	14
3.4.1 Comparaison entre les quatre matériaux	14
3.4.2 Les inventaires dans chaque matériel du toit	19
4 Conclusion	25
5 Bibliographique	26
Annexe	27
1 traduction des flux	27
2 Les hypothèses vérifié	29
3 Les résultats des impacts de ReCiPe Midpoint	31
4 Les résultats des impacts de ReCiPe Endpoint (H, A)	36

Figure

Figure 1 Logo de projet Laubapro	7
Figure 2 Calendrier de mission	9
Figure 3 Retroplanning par Gantt	9
Figure 4 Le logo d'openLCA	10
Figure 5 Frontières du système	12
Figure 6 Le brouillon de deux objectifs dimensionnels différents	13
Figure 7 Les indicateurs d'impacts et leur unité	14
Figure 8 Les impacts des quatre matériaux	15
Figure 9 Les impacts d'Ardoise CUPA	16
Figure 10 Les impacts de tuile TERREAL	17
Figure 11 Les impacts de Lauze calcaire	18
Figure 12 Les impacts de Lauze de Cayrol.	19
Figure 13 Les résultats de ReCiPe Endpoint (H, A)	20
Figure 14 Les impacts d'inventaire de CUPA sur les 5 indicateurs	21
Figure 15 Les impacts d'inventaire de Lauze calcaire sur les 5 indicateurs	22
Figure 16 Les impacts d'inventaire de Lauze de Cayrol sur les 5 indicateurs	23
Figure 17 Les impacts d'inventaire de Tuile TERREAL sur les 5 indicateurs	s. 24

Remerciements

Tout d'abord, je tiens à remercier mon tuteur, Monsieur Guillaume JUNQUA, pour toute l'aide et les conseils qu'il m'a apportés pendant les trois mois et demi de mon stage, qui m'ont permis de commencer par simplement comprendre le logiciel openLCA et de devenir progressivement compétent pour l'utiliser et réaliser ce rapport. Je tiens également à remercier Monsieur Marc VINCHES de m'avoir permis d'assister aux réunions du projet Laubapro et de mieux comprendre le contexte du projet. De plus, avec l'aide de Madame Tara SOLEIMANI-JEVINANI, j'ai maîtrisé de nombreux détails auxquels je dois faire attention pendant le processus de modélisation d'ACV, ce qui m'a beaucoup aidé à mener à bien mon stage. En outre, je tiens à remercier Monsieur Yannick FOGUE pour son aide dans l'obtention des données liées à la modélisation et pour avoir répondu à plusieurs de mes questions.

Enfin, je tiens à remercier le reste de l'équipe CREER qui m'a aidé de diverses manières à mener à bien mon stage.

Résumé

Ce rapport, qui fait partie du projet Laubapro de l'Association des Bâtisseurs en Pierres Sèches (APBS), a pour but d'analyser le projet de la Maison Médicale Intercommunale de Saint Come D'olt. L'objectif était d'analyser et de comparer la lauze du Cayrol, le Calcaire Lauze de Montdardier, l'Ardoise CUPA espagnole et les tuiles céramiques de TERREAL française utilisées pour le toit du projet. Ce rapport a été analysé par calcul à l'aide du logiciel openLCA, avec des données provenant des rapports FDES des entreprises, de la production artisanale et des carrières. La base de données pour l'analyse ACV est Ecoinvent 3.5.

Ce modèle AVC utilise une approche du berceau à la tombe et est divisé en quatre sections principales : production, transport, installation et recyclage. L'analyse finale basée sur les résultats calculés conclut que la lauze de Cayrol utilisée pour le projet de la Maison Médicale Intercommunale de Saint Come D'olt a les faibles impacts environnementaux par rapport aux trois autres matériaux choisis.

Mot-clé: ACV; Matériaux de toiture; Lauze; openLCA

Abstract

This report, which is part of the Laubapro project of the Association des Bâtisseurs en Pierres Sèches (APBS), aims at analyzing the project of the Maison Medical Intercommunal of Saint Come D'olt. The objective was to analyze and compare the Cayrol lauze, the Montdardier Lauze Limestone, the Spanish CUPA Slate and the French TERREAL Ceramic tiles used for the roof of the project. This report was computationally analyzed using openLCA software, with data from the companies' FDES reports, artisanal production and quarries. The database for the LCA analysis is Ecoinvent 3.5.

This LCA model uses a cradle-to-grave approach and is divided into four main sections: production, transportation, installation and recycling. The final analysis based on the calculated results concludes that the Cayrol lauze used for the Maison Medical Intercommunal de Saint Come D'olt project has the lowest environmental impacts compared to the other three materials chosen.

Keyword: LCA; Roof materials; Roofing slate; openLCA

1 Introduction

1.1 Problématique

Les maisons sont essentielles pour nous tous. Sur le marché actuel des toitures, peu de matériaux de couverture utilisent la technologie de la pierre sèche, alors que les tuiles céramiques sont populaires car elles sont légères et peu coûteuses. Notre équipe a donc décidé de mener une étude approfondie sur l'impact environnemental des matériaux de toiture afin d'évaluer l'ampleur de l'impact environnemental des différents matériaux de toiture et de déterminer quelles parties du cycle de vie d'un matériau sont responsables du principal impact environnemental.

1.2 Projet Laubapro

Laubapro (lauziers et bâtisseurs professionnels) est un programme de développement né d'un travail collaboratif réunissant artisans, associations, élus et institutions pour répondre aux besoins des territoires et des filières professionnelles de la lauze et de la pierre sèche. Il est soutenu par l'Agence Nationale de la Cohésion des Territoires (ANCT).

Poursuivant la dynamique initiée par le projet Laubamac (2016-2019) sur les filières de la lauze et de la pierre sèche à l'échelle du Massif Central, les actions menées au sein de Laubapro s'appuient sur un solide réseau partenarial en perpétuel développement.

13 actions concrètes sont portées par 10 partenaires répartis sur le territoire du Massif Central et s'inscrivent dans une dynamique collaborative.

Ces actions ont été retenues pour leur caractère innovant et leur capacité à inspirer d'autres acteurs aux niveaux local, régional et national afin de développer l'économie au sein des territoires. (1)

Figure 1 Logo de projet Laubapro

1.3 Notre équipe

L'équipe ERT (Eau Ressources Territoires) de l'IMT Mines Alès travaille sur la gestion intégrée de l'eau à l'aide d'une large palette de compétences capitalisant sur des savoir-faire de recherche en biologie, chimie, mesure et développement de capteurs, écologie industrielle, géologie, géostatistique, statistique et modélisations hydro(géo)logique et statistique. Elle vise notamment, dans un cadre d'économie circulaire, à proposer des démarches et des systèmes d'évaluation appropriés permettant l'adaptation des territoires devant faire face à une transition socio-écologique, sous la pression conjointe des changements globaux et de l'émergence des nouvelles technologies. (2)

1.4 Description de la mission

Cette mission fait partie du projet Laubapro et a deux objectifs principaux. Le premier est de comparer l'impact environnemental de différents matériaux de toiture en analysant l'ACV de Lauze de Cayrol, Ardoise CUPA, Calcaire Lauze et Tuiles céramiques de TERREAL. Une autre consiste à modéliser l'ensemble du cycle de vie de différentes toitures pour analyser le poids de chaque étape dans son impact environnemental, afin de suggérer des optimisations pour différents matériaux de toiture.

1.5 Planning de mission

Afin de s'assurer que la mission a été réalisée conformément au calendrier du projet, mon tuteur et moi avons utilisé une approche de pré-planification et de replanification basée sur le calendrier, ainsi qu'un rapport d'avancement quotidien et des réunions occasionnelles sur la direction du projet pour permettre à mon tuteur de se tenir au courant de l'avancement du projet et d'apporter des corrections et des optimisations si nécessaire.

Le projet peut être divisé en trois parties selon le calendrier

- a) Apprentissage du logiciel et collecte des données (2 mai 23 mai)
- b) Modélisation de l'ACV et analyse des données (23 mai 8 juillet)
- c) Optimisation du modèle et résumé (8 juillet 12 août)

Figure 2 Calendrier de mission

Au cours du dernier mois jusqu'à la fin de mon stage, j'ai un diagramme de Gantt des tâches chronologiques inversées basé sur les attentes de mon tuteur.

Figure 3 Retroplanning par Gantt

En résumé, une bonne planification a préparé le terrain pour l'achèvement de cette mission.

2 Description de la méthode analytique

2.1 La méthode d'ACV

Cette mission utilise la méthode d'analyse du cycle de vie (AVC, Anglais:Lifecycle assessment, LCA), qui analyse l'impact environnemental d'un produit à différentes étapes, de la production à l'élimination ou au recyclage, en passant par l'utilisation.

L'ACV répertorie l'énergie et les matériaux utilisés dans toutes les industries liées au produit (p. ex. fabrication, utilisation et services) et calcule l'empreinte écologique, évaluant ainsi l'impact potentiel sur l'environnement. L'objectif final est de documenter et d'améliorer l'impact négatif du produit sur l'environnement.

Il existe un certain nombre de procédures normalisées internationalement acceptées pour l'analyse du cycle de vie, notamment les normes ISO 14040 et ISO 14044 dans la série de normes de management environnemental ISO 14000.

Selon les normes ISO 14040 et 14044, une analyse du cycle de vie doit comporter quatre étapes : définition du champ d'application cible, analyse de l'inventaire, évaluation des impacts et interprétation des résultats.

- a) Définition du champ d'application cible : décrit les objectifs et le champ d'application de l'ACV, y compris les limites du système et le niveau de détail, ainsi que les impacts indirects potentiels.
- b) Analyse de l'inventaire : Un inventaire de toutes les informations d'entrée (par exemple, les matières premières, l'énergie, les équipements, etc.), les informations de sortie (par exemple, les produits primaires, les sousproduits, les polluants, les déchets, etc.) et les informations d'impact indirect (par exemple, les impacts écologiques et sociaux, l'utilisation des terres, etc.) dans le cadre du système défini.
- c) Évaluation de l'impact : La classification et la quantification des impacts sur l'environnement à l'aide de modèles et de méthodologies d'évaluation appropriés, qui peuvent être utilisés pour comparer les impacts sur l'environnement nimbe.
- d) Interprétation des résultats : les conclusions et les recommandations sont résumées et discutées sur la base de la définition des objectifs et de la portée.
 Par exemple : les principales causes des chocs environnementaux. (3)

2.2 Le logiciel openLCA

Les évaluations du cycle de vie sont des calculs complexes, et les outils les rendent beaucoup plus faciles. Les outils d'évaluation du cycle de vie existent depuis les années 1990. Alors que la durabilité, le changement climatique et l'économie circulaire font l'objet de plus en plus de débats publics, le marché des outils d'ACV eux-mêmes s'est développé.

Certains des logiciels les plus établis disponibles sur le marché aujourd'hui sont SimaPro, GaBi, oneClickLCA et openLCA. Notre mission a utilisé openLCA pour modéliser les données.

Figure 4 Le logo d'openLCA

2.3 La base de données

La base de données Ecoinvent est une base de données commerciale développée par le Centre suisse Ecoinvent, avec des données provenant principalement d'informations statistiques ainsi que de la littérature technique.

La base de données Ecoinvent est l'une des bases de données les plus utilisées dans le domaine international de l'ACV et l'une des bases de données de base spécifiées par de nombreuses institutions. 3.8, qui contient plus de 18 000 articles multi-pays européens et mondiaux. (4)

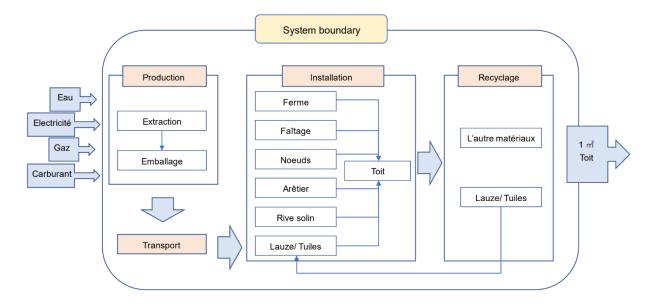
Des événements en Europe et dans le monde entier. La base de données Ecoinvent fournit un support de données internationales riche et faisant autorité. Son site Internet officiel est http://www.ecoinvent.org.

Sur notre mission, nous décidons d'utiliser Ecoinvent 3.5 pour la modélisation, en tenant compte de l'actualité de la base de données et de la puissance de calcul de l'ordinateur.

3 Description du modèle

3.1 Objectifs et champ d'étude

3.1.1 Objectifs


Cette analyse du cycle de vie a été réalisée du berceau à la tombe.

L'ACV a modélisé l'utilisation de la Lauze du Cayrol comme matériau de toiture pour le projet de la Maison Médicale Intercommunale de Saint Come D'olt et trois autres matériaux alternatifs, la Lauze calcaire, l'Ardoise CUPA et Tuiles céramiques de TERREAL ont été modélisés et calculés pour analyser l'impact environnemental des différents matériaux. Dans le même temps, un processus ou une étape de chaque matériau est analysé afin d'identifier les principaux facteurs de l'impact environnemental de ce matériau et de fournir une base pour l'amélioration du matériau correspondant dans l'utilisation des matériaux de couverture.

3.1.2 Frontières du système

En communiquant les objectifs de ce projet avec mon tuteur, nous avons identifié une analyse en quatre parties d'un mètre carré de matériau de toiture en utilisant la production, le transport, l'installation et le recyclage.

Les données relatives aux éléments de base tels que l'eau, l'électricité et le gaz ont été exclues de la limite du système car des données précises n'étaient pas disponibles. Diagramme schématique des frontières du système comme la figure ci-

dessous.

Figure 5 Frontières du système

3.2 Analyse de l'inventaire

Dans la section de production, pour les matériaux de Lauze et d'Ardoise, le modèle prend principalement en compte la consommation d'énergie de l'équipement d'extraction et l'emballage du matériau après l'extraction. Cependant, pour la production de matériaux en tuiles, en plus des deux points ci-dessus, le modèle prend également en compte le processus de cuisson des tuiles.

Dans la section de transport, le modèle prend en compte la distance entre le site de production de plusieurs matériaux et le site du projet (Saint Come D'olt), ainsi que les trajets aller-retour en camion vide.

Dans la section d'installation, le modèle prend en compte non seulement les charpentes en bois et faîtage en zinc, mais aussi les dispositifs de fixation tels que les clous et les crochets pendant le processus d'installation.

Dans la section recyclage, le modèle prend en compte le recyclage du métal, du bois et des matériaux de couverture du toit. Tuile et Ardoise ont utilisé respectivement 20 % et 22 % de leurs rapports FDES, tandis que Lauzes ont utilisé 90 % sur la base des résultats des entretiens avec les artisans.

L'inventaire spécifique des flux utilisés dans ce modèle se trouve à <u>l'annexe 1</u>. En outre, les flux économiques n'ont pas été pris en compte dans ce modèle en raison de la volatilité des prix du marché et de la difficulté d'y accéder.

3.3 Évaluation des impacts

Le modèle utilise les méthodes ReCiPe Midpoint (H) V1.13 et ReCiPe Endpoint (H,A) pour deux objectifs dimensionnels différents.

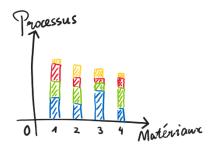


Figure 6 Le brouillon de deux objectifs dimensionnels différents

Pour comparer horizontalement les différents impacts des quatre matériaux de toiture, nous avons décidé de les analyser à l'aide de la méthode d'analyse ReCiPe Midpoint (H) V1.13.

La méthode contient trois catégories principales : l'impact humain, l'impact sur les ressources et l'impact écologique, avec un total de dix-huit indicateurs d'impact environnemental. Les noms des indicateurs et leurs unités sont indiqués dans le tableau ci-dessous.

Impact category	Reference unit
agricultural land occupation (ALOP)	m2a
climate change (GWP100)	kg CO2-Eq
fossil depletion (FDP)	kg oil-Eq
freshwater ecotoxicity (FETPinf)	kg 1,4-DCB-Eq
freshwater eutrophication (FEP)	kg P-Eq
human toxicity (HTPinf)	kg 1,4-DCB-Eq

ionising radiation (IRP_HE)	kg U235-Eq
marine ecotoxicity (METPinf)	kg 1,4-DB-Eq
marine eutrophication (MEP)	kg N-Eq
metal depletion (MDP)	kg Fe-Eq
natural land transformation (NLTP)	m2
ozone depletion (ODPinf)	kg CFC-11-Eq
particulate matter formation (PMFP)	kg PM10-Eq
photochemical oxidant formation (POFP)	kg NMVOC-Eq
terrestrial acidification (TAP100)	kg SO2-Eq
terrestrial ecotoxicity (TETPinf)	kg 1,4-DCB-Eq
urban land occupation (ULOP)	m2a
water depletion (WDP)	m3 water-Eq

Figure 7 Les indicateurs d'impacts et leur unité

Cependant, afin de comparer longitudinalement quel processus au sein d'un matériau de couverture provoque le plus grand impact environnemental, nous avons utilisé la méthode de ReCiPe Endpoint (H,A) pour calculer un score pondéré pour tous les impacts environnementaux, les résultats sont obtenus en additionnant les scores d'impact environnemental pour chaque processus.

3.4 Interprétation de l'analyse

3.4.1 Comparaison entre les quatre matériaux

Le graphique ci-dessous présente une comparaison de chacun des quatre matériaux de toiture pour chacun des facteurs d'impact sur l'environnement. Le résultat maximal est fixé à 100 % et les autres résultats sont indiqués en pourcentage de conversion par rapport à la valeur maximale.

Dans l'ensemble, tuile de TERREAL (bar jeune) a des valeurs élevées dans plusieurs des facteurs d'impact sur l'environnement, tandis que Lauze de Cayrol (bar bleu) a un net avantage dans tous les indicateurs.

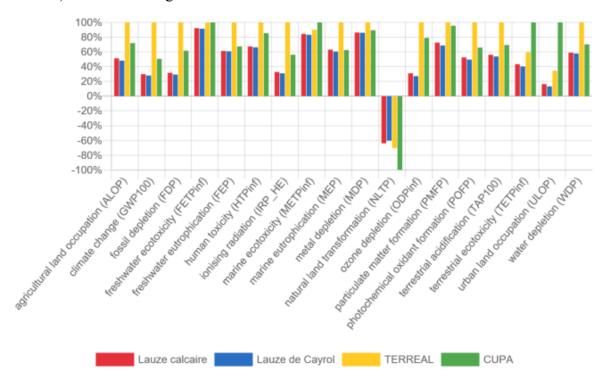


Figure 8 Les impacts des quatre matériaux

Afin d'identifier les processus qui contribuent à ces impacts environnementaux, chaque matériau de toiture a été analysé en quatre parties : production, transport, construction et recyclage, avec les résultats suivants.

3.4.1.1 Les Ardoises CUPA

Comme nous pouvons le voir sur les graphiques d'impact environnemental de la CUPA, le transport et la construction représentent la plupart du total.

Comme CUPA est produit à Barco de Valdeorras, en Espagne, l'impact environnemental du transport de CUPA est relativement élevé, surtout pour « fossil depletion (FDP) » / « ionising radiation (IRP_HE) » / « ozone depletion (ODPinf) » / « terrestrial acidification (TAP100) » et « urban land occupation (ULOP) ».

Le fait que seulement 22% du CUPA puisse être recyclé à la fin de son cycle de vie rend également l'impact du processus de recyclage du CUPA limité.

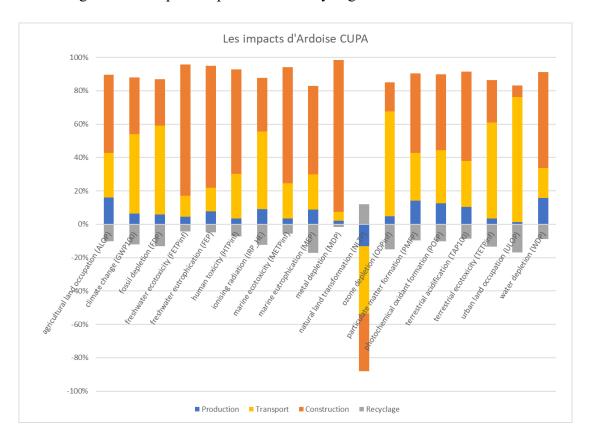


Figure 9 Les impacts d'Ardoise CUPA

3.4.1.2 Les tuiles TERREAL

L'histogramme du pourcentage de l'impact environnemental de la tuile TERREAL montre que le processus de production est la principale source de sa pollution. La production de tuiles nécessite l'extraction d'argile pour la cuisson, ce qui fait que le processus d'extraction des tuiles représente un pourcentage relativement élevé de tous les impacts environnementaux. Comme elles sont produite en France, les distances de transport ne sont pas très longues, le transport ne représente donc qu'un pourcentage plus élevé en « terrestrial acidification (TAP100) » et « urban land occupation (ULOP) ». La tuile a un taux de recyclage de 20% à la fin de son cycle de vie, l'impact du recyclage est donc limité.

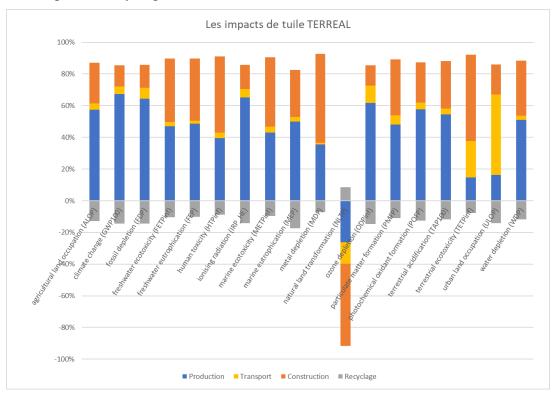


Figure 10 Les impacts de tuile TERREAL

3.4.1.3 Les Lauzes calcaires

Le graphique du pourcentage de Lauze calcaire au carré montre que le secteur de la construction représente une proportion relativement importante de l'impact environnemental. Cela est dû à l'impact environnemental limité des processus de production et de transport du calcaire de Lauze, ce qui signifie que le processus de construction a un impact environnemental plus élevé. En même temps, l'impact environnemental du recyclage est plus prononcé car Lauze est recyclé à 90% à la fin de son cycle de vie.

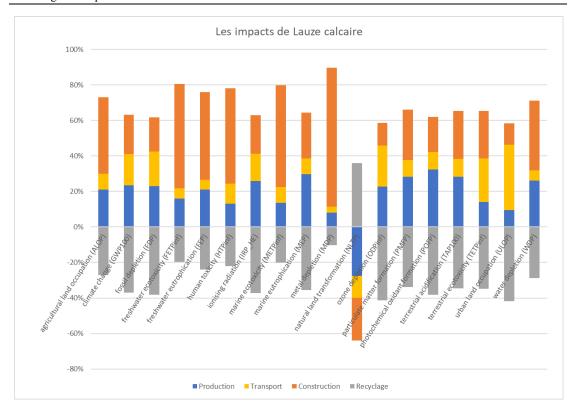


Figure 11 Les impacts de Lauze calcaire

3.4.1.4 Les Lauzes de Cayrol

Comme le site de production de Lauze de Cayrol n'est qu'à 25 km du lieu de construction des maisons, l'histogramme en pourcentage montre que le transport contribue très faiblement à l'impact environnemental, le principal impact environnemental provenant du processus de construction. En même temps, comme Lauze de Cayrol est capable de recycler 90% de ses produits à la fin de son cycle de vie, son processus de recyclage a également un impact significatif sur l'évaluation de l'impact environnemental.

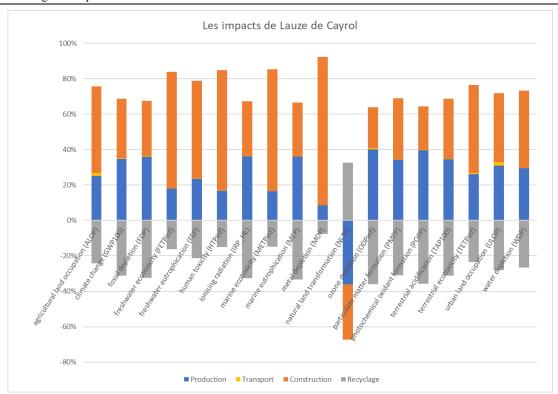


Figure 12 Les impacts de Lauze de Cayrol

3.4.2 Les inventaires dans chaque matériel du toit

Afin d'obtenir une description plus claire des inventaires qui contribuent à l'impact environnemental de chaque cycle de production de matériaux de couverture, les 17 impacts environnementaux de la méthodologie d'analyse ReCiPe E∩dpoint (H, A) sont pondérés à l'aide d'une unité uniforme et les cinq éléments ayant les scores d'impact environnemental les plus élevés sont sélectionnés pour une analyse détaillée.

Les 17 impacts sont divisés en trois sections : Ecosystem quality, Human health et Resources, « human health » étant le plus élevé, suivi de « ecosystem quality » et enfin de « Resources ». Comme il y a beaucoup d'impacts environnementaux, nous avons analysé les cinq indicateurs ayant les scores d'impact les plus élevés parmi les 17 impacts afin de nous concentrer sur eux, et ils sont respectivement « resources (fossil depletion) », « human health (climate change, human health) », « ecosystem quality (climate change, ecosystems) », « human health (particulate matter formation) » et « resources (metal depletion) ».

Indicator	Lauze calcaire	Lauze de Cayrol	TERREAL	CUPA	Unit
ecosystem quality (agricultural land occupation)	1.65504e-4	1.62740e-4	1.76288e-4	2.22129e-4	points
ecosystem quality (climate change, ecosystems)	1.38001e-1	1.29323e-1	4.62162e-1	2.33697e-1	points
ecosystem quality (freshwater ecotoxicity)	2.74801e-4	2.72430e-4	2.39002e-4	2.98220e-4	points
ecosystem quality (freshwater eutrophication)	4.02856e-4	3.98911e-4	6.55988e-4	4.42735e-4	points
ecosystem quality (marine ecotoxicity)	6.74385e-5	6.64998e-5	6.16134e-5	8.15588e-5	points
ecosystem quality (natural land transformation)	2.76386e-3	3.09920e-3	6.22586e-3	2.38209e-3	points
ecosystem quality (terrestrial acidification)	6.36255e-4	6.09583e-4	1.13279e-3	7.86062e-4	points
ecosystem quality (terrestrial ecotoxicity)	9.66312e-4	8.94588e-4	1.34389e-3	2.31686e-3	points
ecosystem quality (total)	1.48882e-1	1.39477e-1	4.83913e-1	2.70100e-1	points
ecosystem quality (urban land occupation)	5.60348e-3	4.64956e-3	1.19154e-2	2.98736e-2	points
human health (climate change, human health)	2.18335e-1	2.04605e-1	7.31198e-1	3.69737e-1	points
human health (human toxicity)	1.08269e-1	1.06490e-1	1.56938e-1	1.34411e-1	points
human health (ionising radiation)	2.13896e-4	2.01913e-4	6.52275e-4	3.66411e-4	points
human health (ozone depletion)	3.76521e-5	3.29267e-5	1.21266e-4	9.70720e-5	points
human health (particulate matter formation)	1.63467e-1	1.54808e-1	2.24762e-1	2.15071e-1	points
human health (photochemical oxidant formation)	3.70619e-3	3.55587e-3	4.45390e-3	5.42755e-3	points
human health (total)	4.94030e-1	4.69694e-1	1.11813e+0	7.25110e-1	points
resources (fossil depletion)	2.87765e-1	2.65340e-1	8.38111e-1	5.67697e-1	points
resources (metal depletion)	1.52992e-1	1.52223e-1	1.14023e-1	1.59973e-1	points
resources (total)	4.40756e-1	4.17563e-1	9.52134e-1	7.27669e-1	points
total (total)	1.08367e+0	1.02673e+0	2.55417e+0	1.72288e+0	points

Figure 13 Les résultats de ReCiPe Endpoint (H, A)

3.4.2.1 Les Ardoises CUPA

Pour les quatre premiers indicateurs d'impact environnemental de l'ardoise CUPA (fossil depletion, climate change for human health, climate change for ecosystems and particulate matter formation), le transport en constitue une grande partie. En termes de ressources (metal depletion), ce sont principalement les clous en acier inoxydable utilisés pour fixer l'ardoise et les feuilles de zinc sur le toit qui jouent un rôle prépondérant.

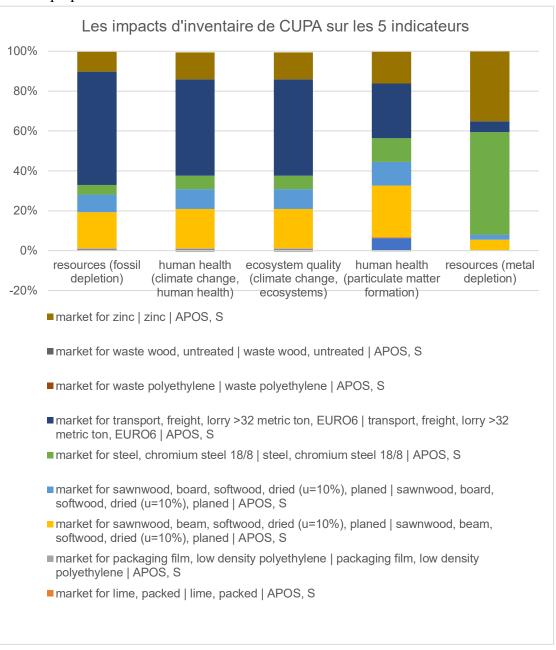


Figure 14 Les impacts d'inventaire de CUPA sur les 5 indicateurs

3.4.2.2 Les lauzes calcaires

Les quatre premiers indicateurs d'impact environnemental pour les calcaires de Lauze ont une répartition similaire, les bois de la charpente représentant près de 50 % de chaque indicateur, suivies par le zinc. Le zinc occupe également la deuxième plus grande proportion en termes de « resources (metal depletion), et les clous en acier inoxydable utilisés pour l'installation du calcaire de Lauze sont les plus grands contributeurs à cet indicateur d'impact environnemental.

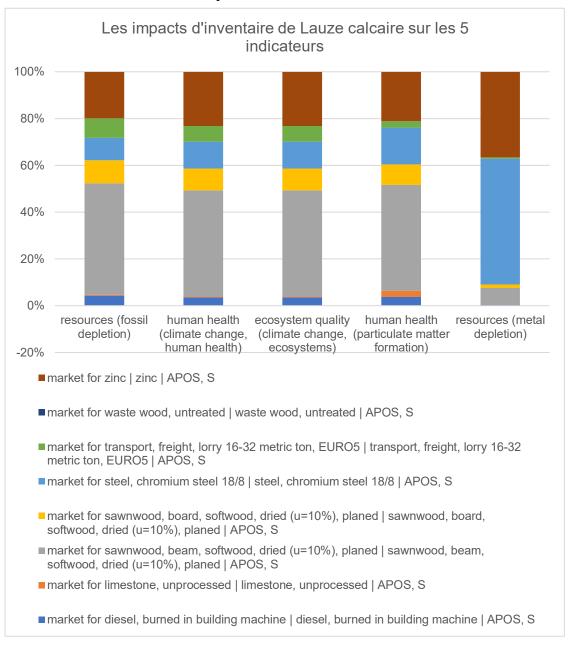


Figure 15 Les impacts d'inventaire de Lauze calcaire sur les 5 indicateurs

3.4.2.3 Les Lauzes de Cayrol

Dans le cas de Lauze de Cayrol, comme le processus de production représente une proportion relativement faible des indicateurs d'impact environnemental, le bois charpente dans le processus de construction domine les quatre premiers indicateurs environnementaux, le zinc et l'acier inoxydable n'arrivant qu'après le bois charpente dans les quatre premiers indicateurs mais étant respectivement premier et deuxième dans le cinquième indicateur.

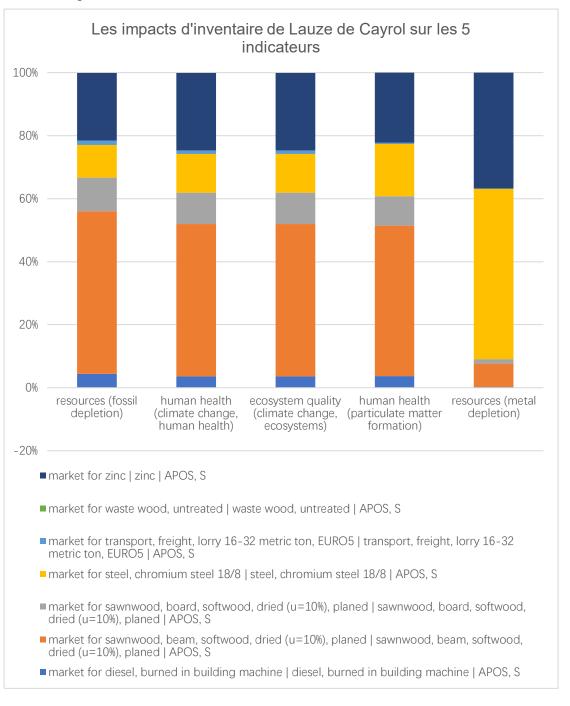


Figure 16 Les impacts d'inventaire de Lauze de Cayrol sur les 5 indicateurs

3.4.2.4 Les Tuiles TERREAL

Pour la Tuile TERREAL, la cuisson de la tuile pendant la production a un impact significatif sur les cinq indicateurs environnementaux sélectionnés, suivie de près par la charpente du bois. Le zinc, le transport et le voligeage du bois représentant environ 20 % du total des trois premiers indicateurs. Dans le cinquième indicateur environnemental, l'utilisation du zinc et la cuisson de la tuile représentent environ 80 % de l'impact.

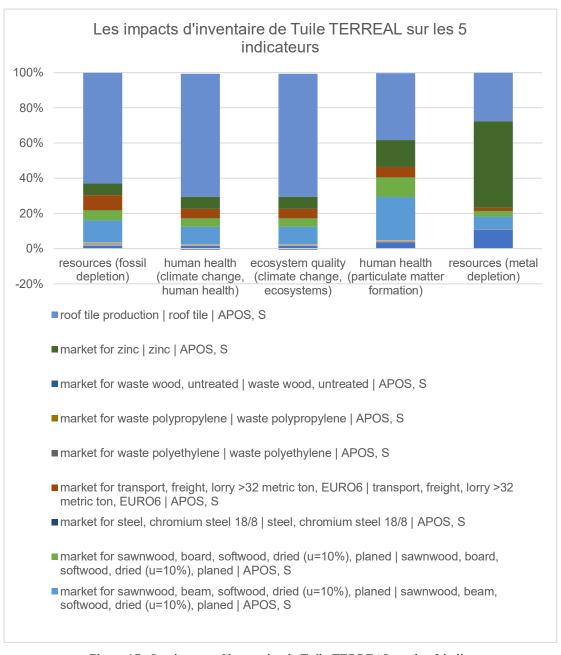


Figure 17 Les impacts d'inventaire de Tuile TERREAL sur les 5 indicateurs

4 Conclusion

Par la modélisation d'openLCA, il est clair que pour les différents matériaux de toiture, la Lauze de Cayrol a un impact environnemental plus faible tout au long de son cycle de vie.

La Lauze de Cayrol et la Lauze calcaire ont une part relativement faible de chaque impact environnemental, mais en raison des distances de transport plus longues de la Lauze calcaire et du poids différent par mètre carré de la Lauze calcaire par rapport à la Lauze de Cayrol, à la fin de la méthode d'analyse AVC, la Lauze de Cayrol est le matériau qui a le moins d'impact sur l'environnement. Dans le cas des Ardoises CUPA, produites en Espagne, les longues distances nécessaires à leur transport vers la France sont sans aucun doute le principal facteur de leur plus grand impact sur l'environnement. En revanche, bien que les tuiles TERREAL soient produites en France et que les distances de transport soient similaires à celles de la Lauze calcaire de Montdardier, le processus de frittage de l'argile pendant la fabrication des tuiles TERREAL a un impact plus important sur l'environnement.

L'impact environnemental des quatre matériaux de toiture a été analysé dans ce rapport à l'aide du logiciel openLCA, mais le prix de chaque matériau n'a pas été étudié et aucune référence comparative n'a donc été fournie du point de vue des coûts, ce qui constitue une lacune de cette étude.

5 Bibliographique

- 1. **Association Artisans Bâtisseurs en Pierres Sèches.** Laubapro. [En ligne] 2020. http://www.pierreseche.fr/abps/la-filliere/laubapro/.
- 2. IMT MINES ALÈS. CREER: CENTRE DE RECHERCHE ET
 D'ENSEIGNEMENT EN ENVIRONNEMENT ET EN RISQUES. [En ligne] 2020.
 [Citation: 10 9 2022.] https://www.imt-mines-ales.fr/ecole/imt-mines-ales/les-centres-de-recherche-et-denseignement/creer.
- 3. **Klüppel, HJ.** ISO 14041: Environmental management life cycle assessment goal and scope definition inventory analysis. [En ligne] 1998. [Citation: 11 9 2022.] https://doi.org/10.1007/BF02979337.
- 4. **ecoinvent.** ecoinvent. [En ligne] [Citation : 12 09 2022.] https://ecoinvent.org/.

Annexe

1 traduction des flux

Objet étudié	Processus utilisé	Référence	Commentaire
Matériaux			
Ardoise	Slate	Ecoinvent	L'ardoise de CUPA d'Espagne
Lauze calcaire	limestone, unprocessed	Ecoinvent	Lauze de Montdardier
Argile	Clay	Ecoinvent	Matière première des tuiles céramiques canal
Chaux	Lime, packed / CH	Ecoinvent	
Zinc	Zinc /GLO	Ecoinvent	
Palanche de voligeage	sawnwood, board, softwood, dried (u=10%), planed	Ecoinvent	
Charpente	Sawnwood, beam, softwood, dried (u=10%), planed	Ecoinvent	
		ACV-Toitures-	
Crochets	steel, chromium steel 18/8	en-lauze-	Pour les tuiles
		calcaire	
Emballage			
Films plastiques	packaging film, low density polyethylene / GLO	Ecoinvent	
Dolotto do boi-	sawnwood, board, softwood, dried (u=10%), planed	Essimment	
Palette de bois	/GLO	Ecoinvent	

Objet étudié	Processus utilisé	Référence	Commentaire
Cerclage PP	polypropylene, granulate / GLO	Ecoinvent	Pour tuiles céramiques de TERREAL
Transport			
Camion >32t	transport, freight, lorry >32 metric ton, EURO5/ RER	Ecoinvent	
Camion de 16-32t	transport, freight, lorry 16-32 metric ton, EURO5/ RER	Ecoinvent	
Consommé sur le char	ntier		
Essence	diesel, burned in building machine / GLO	Ecoinvent	
Mise en décharge			
Bois	waste wood, untreated / FR	Ecoinvent	
Films plastiques	waste polyethylene / FR	Ecoinvent	
Panneaux latéraux	waste polypropylene / FR	Ecoinvent	
Les autres			
Carrière de	1	Б	
calcaire	limestone, unprocessed /limestone quarry operation/ RoW	Ecoinvent	Pour tuiles céramiques de CUPA en Espagne
Carrière d'argile	Clay/ clay pit operation/ CH	Ecoinvent	Pour tuiles céramiques de TERREAL en France
Cuisson d'argile	Roof tile/ roof tile production/ RER	Ecoinvent	Pour tuiles céramiques de TERREAL en France

2 Les hypothèses vérifié

No.	Hypothèses à vérifier	Quel processus?	Accepté?	Sinon, comment corriger?	Réponse
1	Pour le Faîtage, les Rives solins et les arêtier de l'ardoise CUPA, on considère qu'il utilise 5kg de moitier par 1 mètre linéaire,	Construction_CUPA Construction_TERREAL	Oui		
2	En raison du manque de données de consommation pour l'extraction des équipements, les mêmes données de consommation de carburant des équipements que Montdardier sont utilisées pour la production de CUPA et TERREAL.	Production_CUPA Production_TERREAL	Non	Pour CUPA, prendre limestone quarry operation limestone, unprocessed [kg] GLO et pour TERREOS clay pit operation clay [kg] GLO	Je les ai ajouté,
3	Pour tous les transports de marchandise, on a systématiquement multiplié les distances par 5/3 pour considérer un retour à vide sur la même distance en consommant 1/3 de moins qu'à vide.	Production_CUPA Production_TERREAL Production_Cayrol Production_Montdardier	Non	Pour Cupa et Terreal, prendre les données: market for transport, freight, lorry >32 metric ton, EURO6 transport, freight, lorry >32 metric ton, EURO6 [metric ton*km] RER en mettant uniquement les t.km, OK pour Cayrol et Montdardier	Bien noté, Mais après j'ai exporté les résultats, je pense qu'ils sont meilleures quand'on utilise t*k/m*5/3 pour tous les 4,
4	Lorsque le poids du matériau de couverture change, la moitié de la structure est supportée par la charge et change avec l'augmentation du poids du matériau de couverture, l'autre moitié agit comme une structure de partage de la pression et ne change pas avec l'augmentation du poids de la couverture.	Construction_CUPA Construction_TERREAL Construction_Cayrol Construction_Montdardier	Non	Je ne comprends pas	Je pense que j'ai mis un erreur sur les charpentes. D'après l'email du 19 Jul de Guillaume,Je l'ai remplacé par l'hypothèses 5,

No.	Hypothèses à vérifier	Quel processus?	Accepté?	Sinon, comment corriger?	Réponse
5	Pour la volige, on est sur du 27 mm d'épaisseur pour la lauze et du 20 mm d'épaisseur pour de l'ardoise classique (20/27 = 0,74). Pour les fermes, on passe à du 28 cm X 12 cm (12x28/(30x15) = environ 0,75) : par extension, nous allons considérer qu'il y a un facteur multiplicatif de 0,75 pour toutes les pièces de bois composant la charpente et la couverture. Pour les couvertures en tuiles, nous pourrons aussi utiliser ce facteur multiplicatif pour les pièces de bois utilisées.	Construction_CUPA Construction_TERREAL Construction_Cayrol Construction_Montdardier	Oui		
6	Pour emballage du produit, on cosidère que les tuiles CUPA utilisent les films plastiques et les palettes de bois, les tuiles TERREAL utilisent les films plastiques, les palettes de bois et cerclage PP (ils viennent de FDES), les lauzes de Cayrol et Montdardier utilisent seulement les palettes de bois ,	Production_CUPA Production_TERREAL Production_Cayrol Production_Montdardier	Oui		
7	Sur le cerclage PP (Polypropylène) d'emballage de tuiles TERREAL, je n'ai pas trouvé l'inventaire adapté (mots clé comme: belt, rope, tape, packing,,,), donc j'ai choisi l'inventaire "polypropylene, granulate / GLO",	Production_TERREAL	Oui	Ne pas oublier fin de vie: market for waste polypropylene waste polypropylene [kg] FR	Bien noté
8	Sur le recyclage, en s'appuyant sur le rapport de la mission R&D et le rapport du FDES, on suppose qu'à la fin du cycle de vie, 20 % de la Tuile TERREAL est recyclable, 22 % de l'Ardoise CUPA est recyclable, 90 % de la Lauze calcaire et de la Lauze de Cayrol sont recyclable.	Ardoise espagnole_HOU (22%_recyclage) Lauze calcaire_HOU (90%_recyclage) Lauze de Cayrol_HOU (90%_recyclage) Tuiles céramiques canal_HOU (20%_recyclage)	Oui		

3 Les résultats des impacts de ReCiPe Midpoint

Les Tuiles TERREAL

Tuiles_c_ramiques_ca nal_HOU20recycl age	clay pit operati on clay APOS, S	market for lime, packed lime, packed APOS, S	market for packaging film, low density polyethylene packaging film, low density polyethylene APOS, S	market for polypropylen e, granulate polypropylen e, granulate APOS, S	market for sawnwood, beam, softwood, dried (u=10%), planed sawnwood, beam, softwood, dried (u=10%), planed APOS, S	market for sawnwood, board, softwood, dried (u=10%), planed sawnwood, board, softwood, dried (u=10%), planed APOS, S	market for steel, chromium steel 18/8 steel, chromium steel 18/8 APOS, S	market for transport, freight, lorry >32 metric ton, EURO6 transport, freight, lorry >32 metric ton, EURO6 APOS, S	market for waste polyethyl ene waste polyethyl ene APOS, S	market for waste polypropyl ene waste polypropyl ene APOS, S	market for waste wood, untreated waste wood, untreated APOS, S	market for zinc zinc APOS, S	roof tile production roof tile APOS, S
agricultural land occupation (ALOP)	0,00986 079	0,00025153	7,6759E-05	1,7359E-06	0,00711411	0,00344317	1,3757E-07	0,00210277	-2,31E-05	-5,269E-06	-0,0004869	0,0087721	0,0190555
climate change (GWP100)	0,39256 733	0,02920421	0,1458167	0,02477963	2,58222797	1,24645114	3,0467E-05	1,42065603	- 0,1105792	-0,0216102	-0,0335108	1,7134375 5	18,3600283
fossil depletion (FDP)	0,11558 212	0,01004225	0,11883096	0,02372829	0,85330567	0,41054044	8,3174E-06	0,58041103	0,0006563	-0,0001422	-0,011063	0,4829917	4,9660563
freshwater ecotoxicity (FETPinf)	0,01069 87	0,00063538	0,00071654	2,8864E-05	0,02912234	0,01423943	2,6494E-06	0,00600632	0,0054355	-0,0010607	-0,0011944	0,0711578 7	0,08736648
freshwater eutrophication (FEP)	0,00024 807	1,3652E-05	2,1702E-05	1,0096E-06	0,00093313	0,00046219	1,2814E-08	0,00011898	-2,146E- 07	-4,677E-08	-8,426E-06	0,0020734 9	0,00265259
human toxicity (HTPinf)	16,7633 567	0,79810843	0,78994284	0,02376095	36,6650793	17,9531219	0,0005224	10,4902925	-1,910363	-0,3731192	-1,3399746	150,70758	102,627401
ionising radiation (IRP_HE)	0,02630 421	0,01483876	0,01052683	8,8196E-05	0,29207759	0,14338966	1,8801E-06	0,12013853	-9,714E- 05	-2,182E-05	-0,0019139	0,0715359	1,32512718
marine ecotoxicity (METPinf)	12,1177 145	0,70147535	0,7472019	0,03769816	31,3835113	15,3846738	0,00297163	8,49133365	- 7,9183514	-1,5452422	-0,5960944	87,122056 1	85,8183326

Tuiles_c_ramiques_ca nal_HOU20recycl age	clay pit operati on clay APOS, S	market for lime, packed lime, packed APOS, S	market for packaging film, low density polyethylene packaging film, low density polyethylene APOS, S	market for polypropylen e, granulate polypropylen e, granulate APOS, S	market for sawnwood, beam, softwood, dried (u=10%), planed sawnwood, beam, softwood, dried (u=10%), planed APOS, S	market for sawnwood, board, softwood, dried (u=10%), planed sawnwood, board, softwood, dried (u=10%), planed APOS, S	market for steel, chromium steel 18/8 steel, chromium steel 18/8 APOS, S	market for transport, freight, lorry >32 metric ton, EURO6 transport, freight, lorry >32 metric ton, EURO6 APOS, S	market for waste polyethyl ene waste polyethyl ene APOS, S	market for waste polypropyl ene waste polypropyl ene APOS, S	market for waste wood, untreated waste wood, untreated APOS, S	market for zinc zinc APOS, S	roof tile production roof tile APOS, S
marine eutrophication (MEP)	0,00016 744	2,0212E-05	2,516E-05	2,5767E-06	0,00086237	0,00041239	6,7409E-09	0,0001382	-3,006E- 05	-5,873E-06	-0,0005072	0,0007556 5	0,00211618
metal depletion (MDP)	0,18460 256	0,00314533	0,00085857	3,7886E-05	0,08925559	0,04192963	1,2855E-05	0,01757745	-4,268E- 05	-9,589E-06	-0,0008352	1,2080410 6	0,45677483
natural land transformation (NLTP)	0,00057 963	-5,066E-05	-7,214E-06	-5,088E-07	-0,0029996	-0,0014075	-5,367E-09	-0,0008025	2,0009E- 06	4,5561E-07	4,1848E-05	0,0001813	-0,0012975
ozone depletion (ODPinf)	4,8595E -08	6,609E-09	3,8118E-09	1,9322E-10	2,9164E-07	1,3752E-07	1,5042E-12	2,9002E-07	-2,591E- 10	-5,708E-11	-4,66E-09	7,005E-08	1,5182E-06
particulate matter formation (PMFP)	0,00156 523	0,00021333	0,0002298	2,857E-05	0,01072385	0,00489318	1,7185E-07	0,00252112	-7,06E-06	-1,477E-06	-9,863E-05	0,0065906	0,01663334
photochemical oxidant formation (POFP)	0,00323 052	0,00023932	0,0007031	0,00011074	0,0186208	0,00876434	1,2122E-07	0,00429903	-2,531E- 05	-5,214E-06	-0,0003375	0,0097756	0,04939009
terrestrial acidification (TAP100)	0,00345 556	0,00025235	0,0006561	8,9932E-05	0,01675641	0,00800677	1,7207E-07	0,00392933	-1,848E- 05	-3,8E-06	-0,0002385	0,0188178 6	0,04777831
terrestrial ecotoxicity (TETPinf)	0,00085 242	8,7793E-05	7,1508E-05	8,5001E-06	0,00434502	0,00202499	1,1742E-07	0,01013708	-0,000206	-4,031E-05	-0,000155	0,0249745 9	0,0045977
urban land occupation (ULOP)	0,00201 498	0,00053933	0,00051488	5,157E-05	0,03727543	0,01732399	2,9998E-07	0,12208179	0,0001077	-2,468E-05	-0,0023156	0,0116652	0,02713384
water depletion (WDP)	0,00235 287	0,00259604	0,00235723	0,00021266	0,01891868	0,00913307	1,1846E-07	0,00226604	-7,443E- 05	-1,708E-05	-0,0012812	0,0162831	0,03393959

Les Ardoises CUPA

Ardoise_espagnole_HOU_22recyclage	limestone quarry operation limestone, unprocessed APOS, S	market for lime, packed lime, packed APOS, S	market for packaging film, low density polyethylene packaging film, low density polyethylene APOS, S	market for sawnwood, beam, softwood, dried (u=10%), planed sawnwood, beam, softwood, dried (u=10%), planed APOS, S	market for sawnwood, board, softwood, dried (u=10%), planed sawnwood, board, softwood, dried (u=10%), planed APOS, S	market for steel, chromium steel 18/8 steel, chromium steel 18/8 APOS, S	market for transport, freight, lorry >32 metric ton, EURO6 transport, freight, lorry >32 metric ton, EURO6 APOS, S	market for waste polyethylene waste polyethylene APOS, S	market for waste wood, untreated waste wood, untreated APOS, S	market for zinc zinc APOS, S
agricultural land occupation (ALOP)	0,00354839	0,00025153	1,0912E-05	0,00711411	0,00352434	0,00391082	0,00947472	-3,283E-06	-0,0004751	0,00877218
climate change (GWP100)	0,08861701	0,03071098	0,02335591	2,6823774	1,32610377	0,90865902	6,52642103	-0,0159183	-0,0552469	1,82130268
fossil depletion (FDP)	0,02807355	0,01004225	0,01689296	0,85330567	0,42021845	0,23645056	2,6152304	-9,329E-05	-0,0107932	0,48299173
freshwater ecotoxicity (FETPinf)	0,00033939	0,00062756	0,00010069	0,02873319	0,01438905	0,07515554	0,02252489	-0,0007594	-0,0011522	0,07062396
freshwater eutrophication (FEP)	8,8571E-06	1,3652E-05	3,0852E-06	0,00093313	0,00047309	0,00036427	0,00053611	-3,051E-08	-8,221E-06	0,00207349
human toxicity (HTPinf)	0,01193665	0,01825466	0,00260652	0,98247266	0,48823354	0,56548342	2,22929401	-0,0048121	-0,0661951	4,93037815
ionising radiation (IRP_HE)	0,00560769	0,01483876	0,00149649	0,29207759	0,1467699	0,05344915	0,54132315	-1,381E-05	-0,0018672	0,07153593
marine ecotoxicity (METPinf)	0,00033014	0,00060737	9,2932E-05	0,02809096	0,01401405	0,07708727	0,04767854	-0,0007596	-0,0010671	0,09021839
marine eutrophication (MEP)	9,8197E-05	2,0212E-05	3,5767E-06	0,00086237	0,00042211	0,00019163	0,00062273	-4,274E-06	-0,0004948	0,00075565
metal depletion (MDP)	0,00234535	0,00314533	0,00012205	0,08925559	0,04291808	0,36545511	0,07920093	-6,068E-06	-0,0008149	1,20804106
natural land transformation (NLTP)	-0,0003114	-5,066E-05	-1,026E-06	-0,0029996	-0,0014407	-0,0001526	-0,0036158	2,8445E-07	4,0827E-05	-0,0001813
ozone depletion (ODPinf)	1,3451E-08	6,609E-09	5,4189E-10	2,9164E-07	1,4076E-07	4,2763E-08	1,3068E-06	-3,683E-11	-4,546E-09	7,005E-08
particulate matter formation (PMFP)	0,00261005	0,00021333	3,2668E-05	0,01072385	0,00500853	0,00488537	0,0113597	-1,004E-06	-9,622E-05	0,00659068
photochemical oxidant formation (POFP)	0,00226639	0,00023932	9,9952E-05	0,0186208	0,00897095	0,00344603	0,01937067	-3,598E-06	-0,0003293	0,00977563
terrestrial acidification (TAP100)	0,00170031	0,00021619	8,5713E-05	0,01451822	0,0071124	0,00449444	0,01598628	-2,154E-06	-0,0001929	0,01740787
terrestrial ecotoxicity (TETPinf)	9,059E-06	2,3565E-05	8,7442E-07	0,00079597	0,0003817	0,00014587	0,00405816	-2,463E-06	-1,019E-05	0,00119373
urban land occupation (ULOP)	0,00017959	0,00053933	7,3196E-05	0,03727543	0,01773238	0,00852811	0,55007916	-1,532E-05	-0,0022592	0,01166522
water depletion (WDP)	0,00110755	0,00259604	0,0003351	0,01891868	0,00934837	0,00336754	0,01021037	-1,058E-05	-0,0012499	0,01628315

Les lauzes calcaires

Lauze_calcaire_HOU90recyclage	market for diesel, burned in building machine diesel, burned in building machine APOS, S	market for limestone, unprocessed limestone, unprocessed APOS, S	market for sawnwood, beam, softwood, dried (u=10%), planed sawnwood, beam, softwood, dried (u=10%), planed APOS, S	market for sawnwood, board, softwood, dried (u=10%), planed sawnwood, board, softwood, dried (u=10%), planed APOS, S	market for steel, chromium steel 18/8 steel, chromium steel 18/8 APOS, S	market for transport, freight, lorry 16-32 metric ton, EURO5 transport, freight, lorry 16-32 metric ton, EURO5 APOS, S	market for waste wood, untreated waste wood, untreated APOS, S	market for zinc zinc APOS, S
agricultural land occupation (ALOP)	7,1791E-05	0,00112755	0,00948549	0,00196278	0,00391082	0,00049427	-7,461E-05	0,00877218
climate change (GWP100)	0,28372681	0,02768407	3,57650319	0,73853579	0,90865902	0,52750382	-0,0086763	1,82130268
fossil depletion (FDP)	0,10002091	0,00886464	1,13774089	0,23402872	0,23645056	0,19465889	-0,001695	0,48299173
freshwater ecotoxicity (FETPinf)	0,00057108	0,00010029	0,03831093	0,00801357	0,07515554	0,00182059	-0,0001809	0,07062396
freshwater eutrophication (FEP)	1,2873E-05	2,4103E-06	0,00124417	0,00026347	0,00036427	4,2177E-05	-1,291E-06	0,00207349
human toxicity (HTPinf)	0,01639354	0,00351568	1,30996355	0,27190779	0,56548342	0,14420198	-0,0103956	4,93037815
ionising radiation (IRP_HE)	0,019321	0,00178306	0,38943678	0,08173932	0,05344915	0,03967128	-0,0002932	0,07153593
marine ecotoxicity (METPinf)	0,00054428	9,7717E-05	0,03745462	0,00780473	0,07708727	0,00316584	-0,0001676	0,09021839
marine eutrophication (MEP)	0,00013496	3,1074E-05	0,00114983	0,00023508	0,00019163	7,7811E-05	-7,771E-05	0,00075565
metal depletion (MDP)	0,00390331	0,00074798	0,11900745	0,023902	0,36545511	0,007113	-0,000128	1,20804106
natural land transformation (NLTP)	-9,397E-05	-9,913E-05	-0,0039994	-0,0008023	-0,0001526	-0,0002429	6,4117E-06	-0,0001813
ozone depletion (ODPinf)	5,1197E-08	4,3404E-09	3,8885E-07	7,8393E-08	4,2763E-08	9,7052E-08	-7,14E-10	7,005E-08
particulate matter formation (PMFP)	0,00116973	0,00082966	0,01429846	0,00278936	0,00488537	0,00089778	-1,511E-05	0,00659068
photochemical oxidant formation (POFP)	0,00392062	0,00071818	0,02482774	0,00499611	0,00344603	0,00211642	-5,171E-05	0,00977563
terrestrial acidification (TAP100)	0,00226998	0,00053704	0,01935763	0,00396105	0,00449444	0,0016411	-3,029E-05	0,01740787
terrestrial ecotoxicity (TETPinf)	1,031E-05	2,8357E-06	0,00106129	0,00021258	0,00014587	0,00023037	-1,601E-06	0,00119373
urban land occupation (ULOP)	0,00026579	5,4257E-05	0,04970058	0,00987555	0,00852811	0,02264805	-0,0003548	0,01166522
water depletion (WDP)	0,0002146	0,00035132	0,0252249	0,00520631	0,00336754	0,00070222	-0,0001963	0,01628315

Les Lauzes de Cayrol

Lauze_de_Cayrol_HOU90recyclage	market for diesel, burned in building machine diesel, burned in building machine APOS, S	market for sawnwood, beam, softwood, dried (u=10%), planed sawnwood, beam, softwood, dried (u=10%), planed APOS, S	market for sawnwood, board, softwood, dried (u=10%), planed sawnwood, board, softwood, dried (u=10%), planed APOS, S	market for steel, chromium steel 18/8 steel, chromium steel 18/8 APOS, S	market for transport, freight, lorry 16-32 metric ton, EURO5 transport, freight, lorry 16-32 metric ton, EURO5 APOS, S	market for waste wood, untreated waste wood, untreated APOS, S	market for zinc zinc APOS, S
agricultural land occupation (ALOP)	6,7178E-05	0,00948549	0,00196278	0,00391082	7,3238E-05	-7,461E-05	0,00877218
climate change (GWP100)	0,26549581	3,57650319	0,73853579	0,90865902	0,07816239	-0,0086763	1,82130268
fossil depletion (FDP)	0,09359401	1,13774089	0,23402872	0,23645056	0,0288434	-0,001695	0,48299173
freshwater ecotoxicity (FETPinf)	0,00053439	0,03831093	0,00801357	0,07515554	0,00026976	-0,0001809	0,07062396
freshwater eutrophication (FEP)	1,2045E-05	0,00124417	0,00026347	0,00036427	6,2495E-06	-1,291E-06	0,00207349
human toxicity (HTPinf)	0,01534016	1,30996355	0,27190779	0,56548342	0,02136699	-0,0103956	4,93037815
ionising radiation (IRP_HE)	0,01807952	0,38943678	0,08173932	0,05344915	0,00587826	-0,0002932	0,07153593
marine ecotoxicity (METPinf)	0,00050931	0,03745462	0,00780473	0,07708727	0,0004691	-0,0001676	0,09021839
marine eutrophication (MEP)	0,00012629	0,00114983	0,00023508	0,00019163	1,153E-05	-7,771E-05	0,00075565
metal depletion (MDP)	0,0036525	0,11900745	0,023902	0,36545511	0,00105396	-0,000128	1,20804106
natural land transformation (NLTP)	-8,793E-05	-0,0039994	-0,0008023	-0,0001526	-3,599E-05	6,4117E-06	-0,0001813
ozone depletion (ODPinf)	4,7907E-08	3,8885E-07	7,8393E-08	4,2763E-08	1,4381E-08	-7,14E-10	7,005E-08
particulate matter formation (PMFP)	0,00109457	0,01429846	0,00278936	0,00488537	0,00013303	-1,511E-05	0,00659068
photochemical oxidant formation (POFP)	0,0036687	0,02482774	0,00499611	0,00344603	0,0003136	-5,171E-05	0,00977563
terrestrial acidification (TAP100)	0,00212412	0,01935763	0,00396105	0,00449444	0,00024317	-3,029E-05	0,01740787
terrestrial ecotoxicity (TETPinf)	9,6473E-06	0,00106129	0,00021258	0,00014587	3,4134E-05	-1,601E-06	0,00119373
urban land occupation (ULOP)	0,00024871	0,04970058	0,00987555	0,00852811	0,00335585	-0,0003548	0,01166522
water depletion (WDP)	0,00020081	0,0252249	0,00520631	0,00336754	0,00010405	-0,0001963	0,01628315

4 Les résultats des impacts de ReCiPe Endpoint (H, A)

Indicator	Lauze calcaire	Lauze de Cayrol	TERREAL	CUPA	Unit
total (total)	1,08E+00	1,03E+00	2,55E+00	1,72E+00	points
human health (total)	4,94E-01	4,70E-01	1,12E+00	7,25E-01	points
resources (total)	4,41E-01	4,18E-01	9,52E-01	7,28E-01	points
resources (fossil depletion)	2,88E-01	2,65E-01	8,38E-01	5,68E-01	points
human health (climate	2,18E-01	2,05E-01	7,31E-01	3,70E-01	points
change, human health)					
ecosystem quality (total)	1,49E-01	1,39E-01	4,84E-01	2,70E-01	points
ecosystem quality (climate	1,38E-01	1,29E-01	4,62E-01	2,34E-01	points
change, ecosystems)					
human health (particulate	1,63E-01	1,55E-01	2,25E-01	2,15E-01	points
matter formation)					
resources (metal depletion)	1,53E-01	1,52E-01	1,14E-01	1,60E-01	points
human health (human	1,08E-01	1,06E-01	1,57E-01	1,34E-01	points
toxicity)					
ecosystem quality (urban land	5,60E-03	4,65E-03	1,19E-02	2,99E-02	points
occupation)					
human health (photochemical	3,71E-03	3,56E-03	4,45E-03	5,43E-03	points
oxidant formation)					
ecosystem quality (natural	2,76E-03	3,10E-03	6,23E-03	2,38E-03	points
land transformation)					
ecosystem quality (terrestrial	9,66E-04	8,95E-04	1,34E-03	2,32E-03	points
ecotoxicity)					
ecosystem quality (terrestrial	6,36E-04	6,10E-04	1,13E-03	7,86E-04	points
acidification)					
ecosystem quality (freshwater	4,03E-04	3,99E-04	6,56E-04	4,43E-04	points
eutrophication)					
human health (ionising	2,14E-04	2,02E-04	6,52E-04	3,66E-04	points
radiation)					
ecosystem quality (freshwater	2,75E-04	2,72E-04	2,39E-04	2,98E-04	points
ecotoxicity)					
ecosystem quality	1,66E-04	1,63E-04	1,76E-04	2,22E-04	points
(agricultural land occupation)					
human health (ozone	3,77E-05	3,29E-05	1,21E-04	9,71E-05	points
depletion)					
ecosystem quality (marine	6,74E-05	6,65E-05	6,16E-05	8,16E-05	points
ecotoxicity)					